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Abstract 
 

The probability density function for wave propagating in a straight perfect 

electrical conductor (PEC) rough wall tunnel is deduced from the mathematical 

models of the random electromagnetic fields. The field propagating in caves or 

tunnels is a complex-valued Gaussian random processing by the Central Limit 

Theorem. The probability density function for single modal field amplitude in 

such structure is Ricean. Since both expected value and standard deviation of this 

field depend only on radial position, the probability density function, which gives 

what is the power distribution, is a radially dependent function. 

 
 

The radio channel places fundamental limitations on the performance of wireless 

communication systems in tunnels and caves. The transmission path between the 

transmitter and receiver can vary from a simple direct line of sight to one that is 

severely obstructed by rough walls and corners. Unlike wired channels that are 

stationary and predictable, radio channels can be extremely random and difficult 

to analyze. In fact, modeling the radio channel has historically been one of the 

more challenging parts of any radio system design; this is often done using 

statistical methods. In this contribution, we present the most important statistic 
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property, the field probability density function, of wave propagating in a straight 

PEC rough wall tunnel. This work only studies the simplest case – PEC boundary 

which is not the real world but the methods and conclusions developed herein are 

applicable to real world problems which the boundary is dielectric. 

 

The mechanisms behind electromagnetic wave propagation in caves or tunnels are 

diverse, but can generally be attributed to reflection, diffraction, and scattering. 

Because of the multiple reflections from rough walls, the electromagnetic waves 

travel along different paths of varying lengths. The interactions between these 

waves cause multipath fading at any location, and the strengths of the waves 

decrease as the distance between the transmitter and receiver increases. 

 

Since there exist multiple propagation paths, the received signal consists of many 

signals, each of which is described by a propagation delay and an attenuation 

factor, and they are statistical independent each other [1]. Both the propagation 

delays and the attenuation factors are spatially dependent, as a result of changes in 

the structure of the medium or boundaries. Let us assume that the received signal 

is made of N signals which when added produced a sum of phasors, and the 

random complex field has the form 

 ( , , , ) ,rz f j iρ φΦ = Φ + Φ

n n

                               (1)                          
where Φr and Φi are real and imaginary parts of the complex field, respectively.  

          and             (2)  ,
N

r r r
n

mΦ − = Φ∑ ,
N

i i i
n

mΦ − = Φ∑
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where mr  and mi are expected values of the real and imaginary parts of the 

complex field, and Φrn and Φin are the individual field components of real and 

imaginary parts of the complex field, respectively. As a consequence of the 

central limit theorem, the received signals are approximately Gaussian random 

process since N is quite big. This means that the field propagating in a cave or 

tunnel is typically a complex-valued Gaussian random process. The 

electromagnetic fields Φ(ρ,φ,z,t) we studied in time domain is the real quantities 

in the practice. It has been shown that Φr-mr and Φi-mi are uncorrelated [2]. This 

carries out that they are independent because of the Gaussian process. The joint 

probability density function of the complex field Φ is written as 

2 2

2 2 2

( ) ( )1( , ) exp ,
2 2

r r i i
r i

m mp
πσ σ

⎡ ⎤Φ − + Φ −
Φ Φ = −⎢ ⎥

⎣ ⎦
     (3) 

where σ is the standard deviation. It is clear that in polar coordinates 

cos
.

sin
r

i

R
R

φ
φ

Φ = ⎫
⎬Φ = ⎭

                                            (4)                                              

The Jacobian is |J|=R. Then the joint probability density function of the complex 

field Φ in polar coordinates is 

 
2 2

2 2 2 2

2 cos( , ) | | ( , ) exp ,
2 2r i

R R Rm mp R J p ψφ
πσ σ

⎡ ⎤− +
= Φ Φ = −⎢ ⎥

⎣ ⎦
 (5) 

where cos sin cos( ),r im m mφ φ θ φ− ,+ = θ φ ψ− = 2 2 ,r im m m= +  tanθ = mi/mr. 

The probability density function for the random variable R is 

 
2 2

1 2 2 2 2
0

cos( ) ( , ) exp exp .
2

R R m Rmp R p R d d
π π

π

ψφ φ ψ
πσ σ σ−

⎛ ⎞+ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫  (6) 
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By 9.6.16 of [3] we have 

 
2 2

1 2 2( ) exp ,
2 0 2

R R m Rmp R I
σ σ

⎛ ⎞+ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ σ

 (7) 

where I0(x) is the zeroth order modified Bessel function of the first kind. This 

probability density function for the random field amplitude R is Ricean. The 

parameter m denotes the specular field amplitude of the signal.    

 

The electric and magnetic fields are expressed in terms of two scalar functions Ф 

and Ψ, [4] 

 

1 ˆ ˆ
ˆ ,
1 ˆ ˆ
ˆ

z z

z z

E a
y

H a
z

⎫⎪= ∇×∇×Φ −∇×Ψ ⎪⎪⎪⎪⎬⎪⎪= ∇×∇×Ψ +∇×Φ ⎪⎪⎪⎭

a

a
 (8) 

 
where and Casey has solved these scalar functions [5]. For  

Nlth order quasi-TM mode, the first-order potential is expressed in terms of 

Fourier-Stieltjes integral 

0ˆ  z jωµ= 0ˆ .y jωε=
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  (9) 
 
where JN(x) is Nth order first kind of Bessel function, kzNl is the Nlth mode cutoff 

wave number, 2 2
0 ,Nl zNlp k k= − a  a is the average radius of the tunnel, 

2
0 ( zNl zNlk k kλ = − + ' 2) ,σs is the standard deviation of the wall roughness, and 
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ANl and BNl are the Nlth constant coefficients for TE and TM modes, respectively. 

 is Fourier-Stieltjes integral variable such that '( )m zd kν

  (10) { ( )} 0ν =E m zd k ,
and 

  (11) * ' ' ' '{ ( ) ( )} 2 ( ) ( ),ν ν πδ δ= −E m z n z mn z z z z m zd k d k k k dk dk S k

and Sm(kz) is roughness spectral densities. The first-order Nlth order quasi-TE 

mode potential is similar to the quasi-TM potential (9) but is much complicated 

function of m, N, ρ, '
zk , and kzNl. We shall not take the space to write it out. Using 

(8) the different electromagnetic field components are the combinations of the 

different derivatives associated with spatial variables ρ, φ, and z of ΦNl and ΨNl [4]. 

The statistical properties (10) and (11) are dependent of  only; therefore, the 

different electromagnetic fields possess the same statistical characteristics of 

which expressed by ΦNl and ΨNl. Furthermore, the field is found to comprise a 

deterministic or coherent component, identical to that which would be found in a 

tunnel with a smooth wall, and a random or incoherent component whose 

expected value is zero and whose variance functions can be expressed in terms of 

integrals over the power spectral density of the wall roughness. 

'
zk

 

 The real and imaginary parts of Nlth TE or TM mode of the expected values are 
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It is clear that the amplitude of the expected values are 
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From (14) the amplitude of signal expected value mNl depends on radial variable 

ρ only, not the angular variable. The Nlth mode variances for the TE and TM 

cases are 
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We must choose carefully so that the numerical integral can be carrying out. 

The physics tells us that must remain real values. Let  be a band-

limited roughness spectral densities such that 

'( )m zS k

'( )m zS k '( )m zS k

 2 1 ( ) .
2s m z z

m
S k dkσ

π

∞∞

=−∞ −∞

= ∑ ∫                                 (17)  

We assume that  and , and set , 

and S k  elsewhere in the 

region n ≥ 0, kz ≥ 0. We evaluate the constant S0 using equation (17): 
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The correlation function associated with this spectrum is easily shown to be 

0
0 0 0

2 sin[( 1) /2]( , ) [sin( ) sin ] cos[( /2) ].
sin( /2)zz z

S NC z k k z k z N N
z

φφ φ
π φ
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          (20) 

It is obvious that the variance depends on the radial position as well.  

 

Figure 1 (a) and (b) show the probability density function for TE11 mode at 

differentρ. It is clear that the width ∆R of the probability density function closest 

to the wall is largest compared to the  ρ away from the wall. Figure 2 shows the 

probability density function for TE11 mode at different roughness σs. We find out 

that the larger of σs, the more field fluctuation is. Figure 3 illustrates the 
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probability density function for the TE11 and TM01modes at the same location. We 

found that TE11 mode, which has the lowest cutoff frequency, is affected more by 

wall roughness than TM01 mode. In addition, the shapes of all probability density 

functions are symmetrical like the Gaussian bell. We attribute this to the higher 

expected value to variance ratio. 

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

100

200

300

400

500

600

700

R (V/m)

p(
R

)

ρ =0.75a
ρ = 0.8a
ρ = 0.85a

 

(a) 

 8



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

80

90

R (V/m)

p(
R

)
ρ = 0.9a
ρ = 0.95a
ρ = a

 

(b) 

Figure 1 Probability density function for TE11 mode at different radial location, σ 

= 0.2a, f = 1GHz. 
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Figure 2 Probability density function for TE11 mode at different roughness 

situations. ρ = a, f = 1GHz. 
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Figure 3 Probability density function for different modes. ρ = a, σ = 0.2a, f = 

1GHz. 

 

In conclusion, we deduce the single mode probability density function for waves 

propagating in a straight PEC rough wall cave or tunnel from the mathematical 

models of the random electromagnetic fields. The fields propagating in a cave or 

tunnel are complex-valued Gaussian random process, by using the Central Limit 

Theorem. The phase and amplitude of the field joint probability density function 

are independent because of the Gaussian process property. We have shown that 

the probability density function for single mode random field amplitude 

propagating in a straight rough wall tunnel or cave is Ricean. This tells us that 
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there is a dominant signal component, such as a line-of-sight propagation path. In 

such a situation, random components arriving at different angles are 

superimposed towards a stationary signal. At the output of an envelope detector, it 

has the effect of adding a DC component to the random multi-path signal. Since 

both expected value and standard deviation depend only on radial position, the 

probability density function for random field amplitude propagating in a straight 

rough wall tunnel or cave is a radially dependent function. The lowest 

propagation mode is most affected by the rough wall than those higher order 

modes. The probability density functions are symmetric like the Gaussian bell 

because of the higher expected value to variance ratio. 
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